Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 174: 105835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301936

RESUMO

Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.


Assuntos
Acetatos , Alcaloides , Chelidonium , Humanos , Extratos Vegetais/química , Chelidonium majus , Metanol , Células HEK293 , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Solventes/química , Antioxidantes , Água , Chelidonium/química
2.
Phytomedicine ; 126: 155267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368795

RESUMO

BACKGROUND: Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE: Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS: Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS: Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION: Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.


Assuntos
Antineoplásicos , Isoquinolinas , Leucemia , Animais , Humanos , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Apoptose , Simulação de Acoplamento Molecular , Angiogênese , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Autofagia
3.
Sci Rep ; 14(1): 4940, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418706

RESUMO

Chemical exploration of the total extract derived from Epicoccum nigrum Ann-B-2, an endophyte associated with Annona squamosa fruits, afforded two new metabolites, epicoccofuran A (1) and flavimycin C (2), along with four known compounds namely, epicocconigrone A (3), epicoccolide B (4), epicoccone (5) and 4,5,6-trihydroxy-7-methyl-1,3-dihydroisobenzofuran (6). Structures of the isolated compounds were elucidated using extensive 1D and 2D NMR along with HR-ESI-MS. Flavimycin C (2) was isolated as an epimeric mixture of its two diastereomers 2a and 2b. The new compounds 1 and 2 displayed moderate activity against B. subtilis, whereas compounds (2, 3, 5, and 6) showed significant antiproliferative effects against a panel of seven different cancer cell lines with IC50 values ranging from 1.3 to 12 µM.


Assuntos
Annona , Antineoplásicos , Ascomicetos , Benzofuranos , Annona/química , Frutas , Benzofuranos/farmacologia , Ascomicetos/química , Antineoplásicos/química , Estrutura Molecular
4.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288952

RESUMO

Phytolacca americana L. is of great interest as a traditional additive in various folk remedies in several countries, including Turkey. We aimed to determine the chemical profile (assisted by high-Performance liquid chromatography-electrospray ionization-tandem mass apectrometry (HPLC-ESI-MS/MS) experiments of three extracts obtained by different polarity solvents viz. ethyl acetate (to extract semipolar compounds), methanol and water (to extract highly polar metabolites) from P. americana leaves. Their anti-diabetic effects were investigated in vitro by assessing their inhibition toα-amylase and α-glucosidase. Assessment of the neuroprotective potential of the three extracts was carried out against acetyl-(AChE) and butyryl-(BChE) cholinesterase enzymes. HPLC-ESI-MS/MS experiments showed a total of 17 chromatographic peaks primarily classified to six flavonoids, two saponins, and six fatty acids. Antioxidant assays revealed remarkable activity for the ethyl acetate and methanol extracts. The BChE inhibition was considerably more significant (4.08 mg galantamine equivalent (GALAE)/g) for the ethyl acetate extract, whereas the methanol extract had good inhibitory efficacy for AChE (2.05 mg GALAE/g). Through network pharmacology, the compounds' mechanism of action of targeted key gene in their associated diseases were identified. The hubb gene signal transducer and activator of transcription 3 (STAT3) and tumour necrosis factor (TNFα) where the P. americana compound's site of action in inflammation bowel disease. The results offer possibilities for the prospective application of P. americana in metabolic regulation, blood glucose control, and as a source of bioactive compounds with cholinesterase enzyme inhibitory characteristics which could be of relevance in the cosmetic or pharmaceutical industry for combating melanogenesis.Communicated by Ramaswamy H. Sarma.

5.
Chem Biodivers ; 21(2): e202301651, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016080

RESUMO

The Lamiaceae family, encompassing diverse plant species, holds significant value in food, medicine, and cosmetics. Within this family, Pentapleura subulifera and Cyclotrichium glabrescens, relatively unexplored species, were investigated for their chemical composition, antioxidant capacity, and enzyme-inhibiting effects. The chemical composition of hexane, methanolic, and aqueous extracts from P. subulifera and C. glabrescens were analyzed using LC-ESI-MS/MS and the non-polar hexane fraction was investigated via GC-MS. The antioxidant potential of the extracts was determined through radical scavenging, reducing power and metal chelating assays. Additionally, inhibitory activity against six enzymes - acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase - was examined. The aqueous extract of P. subulifera and the methanolic extract of C. glabrescens exhibited elevated phenolic content at 129.47 mg gallic acid equivalent (GAE)/g and 55.97 mg GAE/g, respectively. Chemical profiling of the constituents of the two plant species resulted in the identification of a total of twenty compounds. The majority of which belonged to flavonoids and quinic acid derivatives, primarily concentrated in the methanol and aqueous extracts. Among all antioxidant assays, the aqueous extracts of P. subulifera demonstrated superior antioxidant activity, with the highest recorded activity of 404.93 mg trolox equivalent (TE)/g in the cupric reducing antioxidant capacity (CUPRAC) test. Meanwhile, the hexane extract of C. glabrescens exhibited the highest AChE inhibitory activity at 2.71 mg galanthamine equivalent (GALAE)/g, followed by the methanol extract of P. subulifera at 2.41 mg GALAE/g. These findings unequivocally establish the notable antioxidant and enzyme inhibitory activity of P. subulifera and C. glabrescens extracts, underscoring their potential as a source of valuable natural antioxidants.


Assuntos
Antioxidantes , Lamiaceae , Antioxidantes/farmacologia , Antioxidantes/química , Butirilcolinesterase , Hexanos , Acetilcolinesterase , Metanol , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos , Flavonoides/química
6.
Chem Biol Interact ; 383: 110677, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586545

RESUMO

Geldanamycin is an ansamycin-derivative of a benzoquinone isolated from Streptomyces hygroscopicus. It inhibits tyrosine kinases and heat shock protein 90 (HSP90). Geldanamycin and 11 derivatives were subjected to molecular docking to HSP90, and 17-desmethoxy-17-N,N-dimethylamino-geldanamycin (17-DMAG) was the compound with the highest binding affinity (-7.73 ± 0.12 kcal/mol) and the lowest inhibition constant (2.16 ± 0.49 µM). Therefore, 17-DMAG was selected for further experiments in comparison to geldanamycin. Multidrug resistance (MDR) represents a major problem for successful cancer therapy. We tested geldanamycin and 17-DMAG against various drug-resistant cancer cell lines. Although geldanamycin and 17-DMAG inhibited the proliferation in all cell lines tested, multidrug-resistant P-glycoprotein-overexpressing CEM/ADR5000 cells were cross-resistant, ΔEGFR-overexpressing tumor cells and p53 knockout cells were sensitive to these two compounds. COMPARE and hierarchical cluster analyses were performed, and 60 genes were identified to predict the sensitivity or resistance of 59 NCI tumor cell lines towards geldanamycin and 17-DMAG. The distribution of cell lines according to their mRNA expression profiles indicated sensitivity or resistance to both compounds with statistical significance. Moreover, bioinformatic tools were used to study possible mechanisms of action of geldanamycin and 17-DMAG. Galaxy Cistrome analyses were carried out to predict transcription factor binding motifs in the promoter regions of the candidate genes. Interestingly, the NF-ĸB DNA binding motif (Rel) was identified as the top transcription factor. Furthermore, these 60 genes were subjected to Ingenuity Pathway Analysis (IPA) to study the signaling pathway interactions of these genes. Interestingly, IPA also revealed the NF-ĸB pathway as the top network among these genes. Finally, NF-ĸB reporter assays confirmed the bioinformatic prediction, and both geldanamycin and 17-DMAG significantly inhibited NF-κB activity after exposure for 24 h. In conclusion, geldanamycin and 17-DMAG exhibited cytotoxic activity against different tumor cell lines. Their activity was not restricted to HSP90 but indicated an involvement of the NF-KB pathway.


Assuntos
NF-kappa B , Neoplasias , Lactamas Macrocíclicas/farmacologia , Simulação de Acoplamento Molecular , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/metabolismo
7.
Mar Drugs ; 21(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504935

RESUMO

Brown algae comprise up to 2000 species with wide dissemination in temperate zones. A comprehensive untargeted metabolic profiling guided by molecular networking of three uninvestigated Red-Sea-derived brown algae, namely Sirophysalis trinodis, Polycladia myrica, and Turbinaria triquetra, led to the identification of over 115 metabolites categorized as glycerolipids, fatty acids, sterol lipids, sphingolipids, and phospholipids. The three algae exhibited low-to-moderate antioxidant capacity using DPPH and ABTS assays. Preliminary in vitro antiproliferative studies showed that the algal extracts displayed high cytotoxic activity against a panel of cancer cell lines. The most potent activity was recorded against MCF-7 with IC50 values of 51.37 ± 1.19, 63.44 ± 1.13, and 59.70 ± 1.22 µg/mL for S. trinodis, P. myrica, and T. triquetra, respectively. The cytotoxicity of the algae was selective to MCF-7 without showing notable effects on the proliferation of normal human WISH cells. Morphological studies revealed that the algae caused cell shrinkage, increased cellular debris, triggered detachment, cell rounding, and cytoplasmic condensation in MCF-7 cancer cells. Mechanistic investigations using flow cytometry, qPCR, and Western blot showed that the algae induced apoptosis, initiated cell cycle arrest in the sub-G0/G1 phase, and inhibited the proliferation of cancer cells via increasing mRNA and protein expression of p53, while reducing the expression of PI3K, Akt, and mTOR.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cromatografia Líquida , Oceano Índico , Proliferação de Células , Espectrometria de Massas em Tandem , Serina-Treonina Quinases TOR/metabolismo , Células MCF-7 , Apoptose , Linhagem Celular Tumoral
8.
Nat Prod Res ; : 1-5, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987744

RESUMO

Ancistrobrevinium A (1) is the first N-methylated and non-hydrogenated, and thus cationic naphthylisoquinoline alkaloid. It was discovered in the root bark extract of the phytochemically productive West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Its constitution was elucidated by HR-ESI-MS and 1D and 2D NMR. Due to the steric hindrance in the proximity of the linkage between the naphthalene and isoquinoline parts, the biaryl axis is rotationally hindered. It thus constitutes a stable element of chirality - the only one in the new alkaloid since, different from most other naphthylisoquinoline alkaloids, it has no stereogenic centers. The axial configuration of 1 was assigned by electronic circular dichroism (ECD) investigations, which gave a positive couplet, indicating a 'positive chirality', here corresponding to a P-configuration. Ancistrobrevinium A (1) showed a weak cytotoxic activity against A549 lung cancer cells (IC50 = 50.6 µM).

9.
Bioorg Med Chem Lett ; 86: 129234, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905967

RESUMO

The discovery of a new naphthylisoquinoline alkaloid, dioncophyllidine E (4), from the tropical liana Ancistrocladus abbreviatus (Ancistrocladaceae) is described. Due to its rare 7,3'-coupling type, combined with the lack of an oxygen function at C-6, it is configurationally semi-stable at the biaryl axis, and thus occurs as a pair of slowly interconverting atropo-diastereomers, 4a and 4b. Its constitution was assigned mainly by 1D and 2D NMR. The absolute configuration at the stereocenter, C-3, was elucidated by oxidative degradation. The absolute axial configuration of the individual atropo-diastereomers was established by their HPLC resolution, combined with online electronic circular dichroism (ECD) investigations, providing nearly mirror-imaged LC-ECD spectra. These were assigned to the respective atropisomers by ECD comparison with a related, but configurationally stable alkaloid, ancistrocladidine (5). Dioncophyllidine E (4a/4b) exhibits a strong preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrient-deprived conditions, with a PC50 value of 7.4 µM, suggesting its potential as an agent against pancreatic cancer.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Antineoplásicos/uso terapêutico , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos Fitogênicos/química
10.
RSC Adv ; 12(45): 28916-28928, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320727

RESUMO

The West African liana Ancistrocladus abbreviatus is a rich source of structurally most diverse naphthylisoquinoline alkaloids. From its roots, a series of four novel representatives, named ancistrobrevolines A-D (14-17) have now been isolated, displaying an unprecedented heterocyclic ring system, where the usual isoquinoline entity is replaced by a ring-contracted isoindolinone part. Their constitutions were elucidated by 1D and 2D NMR and HR-ESI-MS. The absolute configurations at the chiral axis and at the stereogenic center were assigned by using experimental and computational electronic circular dichroism (ECD) investigations and a ruthenium-mediated oxidative degradation, respectively. For the biosynthetic origin of the isoindolinones from 'normal' naphthyltetrahydroisoquinolines, a hypothetic pathway is presented. It involves oxidative decarboxylation steps leading to a ring contraction by a benzilic acid rearrangement. Ancistrobrevolines A (14) and B (15) were found to display moderate cytotoxic effects (up to 72%) against MCF-7 breast and A549 lung cancer cells and to reduce the formation of spheroids (mammospheres) in the breast cancer cell line.

11.
Plants (Basel) ; 11(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807651

RESUMO

Lantana camara L. and Lantana montevidensis Briq. (F. Verbenaceae) are invasive ornamental weeds native to the tropical regions of Africa and America. The leaves of both species have been traditionally used as infusions for treating fever, rheumatism, and cancer. LC-MS-MS-guided profiling of the methanolic extracts of the leaves of L. camara and L. montevidensis growing in Egypt led to the putative identification of 59 compounds belonging to terpenoids, flavonoids, iridoid glycosides, phenolic acids, and their derivatives. The in-vitro antioxidants and anti-inflammatory and anticancer activities of the two extracts were investigated. L. camara and L. montevidensis inhibited DPPH• (IC50 = 34.01 ± 1.32 and 47.43 ± 1.74 µg/mL), ABTS+ (IC50 = 30.73 ± 1.42 and 40.37 ± 1.51 µg/mL), and superoxide anion (IC50 = 1.57 ± 0.19 and 1.31 ± 0.14 µg/mL) free radicals. A potent anti-inflammatory effect was observed for both species through the inhibition of elastase release in fMLF/CB-induced human neutrophils (IC50 = 2.40 ± 0.16 and 1.90 ± 0.07 µg/mL). The extracts showed significant cytotoxic activity against a panel of cancer cell lines with the most potent activity against Caco cells (IC50 = 45.65 ± 1.64 and 40.67 ± 1.52 µg/mL for L. camara and L. montevidensis, respectively). Western blotting supported by FACS analysis revealed that the extracts inhibited cancer cell proliferation, reduced metastasis, and induced apoptosis resulting in cell cycle arrest. This was achieved via increasing mRNA and protein expressions of p53 and GSK-3ß as well as decreasing the expression of PI3K, Akt, and cyclin D1.

12.
J Enzyme Inhib Med Chem ; 37(1): 1974-1986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35850583

RESUMO

GC-MS profiling and metabolomics study of anise and star anise oils obtained by hydrodistillation, n-hexane, and microwave-assisted extraction methods were conducted herein. Trans-anethole was the major phenylpropanoid in both oils. Principal component and hierarchical cluster analyses revealed a clear separation of different extraction methods. Microwave-assisted star anise oil (MSA) revealed the highest anethole content (93.78%). MSA oil showed antioxidant activity using DPPH and ABTS assays, this was verified via an in-silico docking study of its major compounds on human tyrosinase and NAD(P)H oxidase. Trans-anethole displayed the best fitting scores (-8.9 and -10.1 Kcal/mole, respectively). MSA oil showed promising cytotoxic activity on different cell lines, mainly the cervical (HeLa) cell lines. Cell cycle inhibition at the G0-G1 phase was observed with an early apoptotic effect of the oil on HeLa cells. Trans-anethole achieved the best docking scores (-7.9, -9.3 and -9.9 Kcal/mole) for in-silico study on EGFR, CDK2 and CDK4 enzymes engaged in cancer, respectively.


Assuntos
Antioxidantes , Óleos Voláteis , Derivados de Alilbenzenos , Anisóis , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa , Humanos , Óleos Voláteis/química
13.
Bioorg Med Chem ; 30: 115950, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383442

RESUMO

From the leaves of Ancistrocladus abbreviatus (Ancistrocladaceae), six 5,1'-coupled naphthyldihydroisoquinoline alkaloids were isolated, ancistrobrevidines A-C (5-7), 5-epi-dioncophyllidine C2 (10), 6-O-methylhamatinine (8), and 6-O-methylancistectorine A3 (9); the two latter compounds were already known from related plants. Most strikingly, this series comprises alkaloids belonging to three different subclasses of naphthylisoquinolines. Ancistrobrevidine C (7) and the alkaloids 8 and 9, displaying the S-configuration at C-3 and an oxygen function at C-6, are three further representatives of the large subgroup of 5,1'-coupled Ancistrocladaceae-type compounds found in nature. 5-epi-Dioncophyllidine C2 (10), lacking an oxygen function at C-6 and having the R-configuration at C-3, is only the third representative of a 5,1'-linked Dioncophyllaceae-type naphthylisoquinoline. Likewise rare are 5,1'-coupled hybrid-type alkaloids, which are 6-oxygenated and 3R-configured. The ancistrobrevidines A (5) and B (6) are the only second and third examples of such 5,1'-linked naphthylisoquinolines in Ancistrocladus species showing the landmarks of both, Ancistrocladaceae- and Dioncophyllaceae-type naphthylisoquinolines. In the roots of A. abbreviatus, two further unprecedented 5,1'-coupled alkaloids were discovered, ancistrobreviquinones A (11) and B (12), consisting of a 3,4-naphthoquinone portion coupled to a tetrahydroisoquinoline subunit. They are the very first quinoid naphthylisoquinolines possessing an ortho-diketone entity. Ancistrobrevidine C (7) exerted pronounced antiproliferative activities against HeLa cervical cancer cells and preferential cytotoxicity towards PANC-1 human pancreatic cancer cells under nutrient-deprived conditions following the antiausterity approach. Moreover, 7 suppressed the migration of PANC-1 cells and significantly inhibited colony formation under nutrient-rich conditions in a concentration-dependent manner, and induced dramatic alteration in cell morphology, leading to cell death.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Magnoliopsida/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Raízes de Plantas/química , Relação Estrutura-Atividade
14.
Toxicol Appl Pharmacol ; 409: 115297, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091442

RESUMO

Breast cancer is one of the most common types of cancer in the world and a major cause of mortality. Present therapeutic strategies against breast cancer have severe drawbacks such as allergies, damage to healthy tissues, reoccurrence of cancer, and emergence of drug resistance. Naphthylisoquinoline alkaloids are a group of structurally unique natural products produced by tropical lianas belonging to the plant families Dioncophyllaceae and Ancistrocladaceae indigenous to Asia and Africa. These secondary metabolites have been reported to show anti-infective activity, but they also act against leukemic and pancreatic cancer cells. In the present study we have tested the potential of eleven mono- and dimeric naphthylisoquinoline compounds against two breast cancer cell lines, MCF-7 and MDA-MB-231. Three out of the compounds (agents 1, 4, and 11) showed significant activities against both tested cancer cell lines. Further mechanistic investigations revealed that all of the three substances induce apoptotic cell death via its intrinsic pathway by causing deformation of the nuclear membrane, disruption of the mitochondrial membrane potential (MMP), and elevated reactive oxygen species (ROS) production in both cell lines. Flow cytometric analysis using Annexin V - FITC/PI double staining showed an increased number of apoptotic cells in both, the early and the late phases.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Quinolinas/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
15.
Mar Drugs ; 18(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752177

RESUMO

Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC50 values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC50 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cerebrosídeos/farmacologia , Holothuria/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Células HeLa , Células Hep G2 , Chaperonas de Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Células MCF-7 , Masculino , Estrutura Molecular , Células PC-3 , Proteína Fosfatase 2/metabolismo , Metabolismo Secundário , Relação Estrutura-Atividade
16.
Mar Drugs ; 18(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650455

RESUMO

Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inibidores da Aromatase/farmacologia , Ergosterol/farmacologia , Magnoliopsida , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Inibidores da Aromatase/química , Ergosterol/química , Humanos , Oceano Índico , Células MCF-7/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Relação Estrutura-Atividade
17.
Mar Drugs ; 18(5)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375235

RESUMO

Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (1), and a cerebroside, stylissoside A (2), from the methanol extract of the Red Sea sponge Stylissa carteri. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract's metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, 1 and 2, displayed strong cytotoxicity against the MCF-7 cell line, with IC50 values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC50 at 36.8 ± 0.16 µM for 1 and IC50 30.5 ± 0.23 µM for 2 compared to the standard drug cisplatin. Molecular docking experiments showed that 1 and 2 displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Ceramidas/farmacologia , Cerebrosídeos/farmacologia , Poríferos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Ceramidas/química , Ceramidas/isolamento & purificação , Ceramidas/metabolismo , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Cerebrosídeos/metabolismo , Cisplatino/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Humanos , Oceano Índico , Concentração Inibidora 50 , Células MCF-7 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Metabolismo Secundário
18.
J Nat Prod ; 83(4): 1139-1151, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32125158

RESUMO

Ancistrosecolines A-F (8-13) are the first seco-type naphthylisoquinoline alkaloids discovered in Nature. In all these novel compounds, the tetrahydroisoquinoline ring is cleaved, with loss of C-1. They were isolated from the root bark of Ancistrocladus abbreviatus (Ancistrocladaceae), along with 1-nor-8-O-demethylancistrobrevine H (14), which is the first naturally occurring naphthylisoquinoline lacking the otherwise generally present methyl group at C-1. The stereostructures of the new alkaloids were established by HRESIMS, 1D and 2D NMR, oxidative degradation, and experimental and quantum-chemical ECD investigations. Ancistrosecolines A-F (8-13) and 1-nor-8-O-demethylancistrobrevine H (14) are typical Ancistrocladaceae-type metabolites, i.e., oxygenated at C-6 and S-configured at C-3, belonging to the subclasses of 7,1'- and 7,8'-coupled alkaloids. The biaryl linkages of 8-14 are rotationally hindered due to bulky ortho-substituents next to the axes. Owing to the constitutionally unsymmetric substitution patterns on each side of the axis, this C-C single bond represents an element of chirality in 1-nor-8-O-demethylancistrobrevine H (14) and in ancistrosecolines A-D (8-11). In ancistrosecolines E (12) and F (13), however, the likewise rotationally hindered biaryl axes do not constitute chiral elements, due to a symmetric substitution pattern, with its identical two methoxy functions at C-6 and C-8 in the phenyl subunit. And these two methoxy groups are, for the first time, not constitutionally heterotopic, but diastereotopic to each other. Ancistrosecoline D (11) exhibits strong cytotoxicity against HeLa cervical cancer cells. As visualized by Hoechst nuclei staining and by real-time imaging experiments, 11 induced massive nuclei fragmentation in HeLa cells, leading to apoptotic cell death.


Assuntos
Alcaloides/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caryophyllales/química , Isoquinolinas/farmacologia , Magnoliopsida/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Células HeLa , Humanos , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Estrutura Molecular , Raízes de Plantas/química
19.
J Nat Prod ; 82(11): 3033-3046, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31642313

RESUMO

Three new naphthylisoquinoline dimers, jozibrevines A-C (1a-c), were isolated from the West African shrub Ancistrocladus abbreviatus, along with the known dimer jozimine A2 (1d). The two molecular moieties of 1a-d are coupled via the sterically constrained 3',3″-positions of their two naphthalene units, so that the central biaryl linkage is rotationally hindered. With the two outer axes also being chiral, 1a-d possess three consecutive stereogenic axes. The four isolated dimers all have the same constitutions and identical absolute configurations at the four stereogenic centers, but differ by their axial chirality. They belong to the extremely small class of Dioncophyllaceae-type naphthylisoquinoline dimers, i.e., being devoid of oxygen functions at C-6 and bearing the R-configuration at C-3 in their isoquinoline portions. Besides these dimers, the plant produces predominantly typical Ancistrocladaceae-type monomeric compounds, i.e., with the S-configuration at C-3 and an oxygen function at C-6, such as the new ancistrobrevines K (5) and L (6). Furthermore, a new hybrid-type (i.e., mixed Ancistrocladaceae/Dioncophyllaceae-type) alkaloid was identified, named ancistrobrevine M (7), which is 3R-configured and 6-oxygenated. Remarkable was the discovery of its "inverse hybrid-type" counterpart, dioncoline A (8). It is the as yet only known 3S-configured naphthylisoquinoline lacking an O-functionality at C-6. The new jozibrevines A-C (1a-c) exhibited pronounced antiplasmodial activities in the submicromolar range, with 1a being the most potent compound (IC50, 0.012 µM). Furthermore, jozimine A2 (1d) showed cytotoxicity against human colon carcinoma (HT-29), fibrosarcoma (HT1080), and multiple myeloma (MM.1S) cancer cells, displaying IC50 values of 12.0, 9.0, and 5.0 µM, respectively, whereas jozibrevines A (1a) and B (1b) were nontoxic in this concentration range.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Caryophyllales/química , Isoquinolinas/química , Isoquinolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , África Ocidental , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Estrutura Molecular , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacos
20.
RSC Adv ; 9(28): 15738-15748, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521375

RESUMO

A unique series of six biaryl natural products displaying four different coupling types (5,1', 7,1', 7,8', and 5,8') were isolated from the roots of the West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Although at first sight structurally diverse, these secondary metabolites all have in common that they belong to the rare group of naphthylisoquinoline alkaloids with a fully dehydrogenated isoquinoline portion. Among the African Ancistrocladus species, A. abbreviatus is so far only the second one that was found to produce compounds with such a molecular entity. Here, we report on four new representatives, named ancistrobreveines A-D (12-14, and 6). They were identified along with the two known alkaloids 6-O-methylhamateine (4) and ent-dioncophylleine A (10). The two latter naphthylisoquinolines had so far only been detected in Ancistrocladus species from Southeast Asia. All of these fully dehydrogenated alkaloids have in common being optically active despite the absence of stereogenic centers, due to the presence of the rotationally hindered biaryl axis as the only element of chirality. Except for ent-dioncophylleine A (10), which lacks an oxygen function at C-6, the ancistrobreveines A-D (12-14, and 6) and 6-O-methylhamateine (4) are 6-oxygenated alkaloids, and are, thus, typical 'Ancistrocladaceae-type' compounds. Ancistrobreveine C (14), is the first - and so far only - example of a 7,8'-linked fully dehydrogenated naphthylisoquinoline discovered in nature that is configurationally stable at the biaryl axis. The stereostructures of the new alkaloids were established by spectroscopic (in particular HRESIMS, 1D and 2D NMR) and chiroptical (electronic circular dichroism) methods. Ancistrobreveine C (14) and 6-O-methylhamateine (4) exhibited strong antiproliferative activities against drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA